Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 63, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481317

RESUMO

BACKGROUND: Obligate blood-feeding insects obtain the nutrients and water necessary to ensure survival from the vertebrate blood. The internal taste sensilla, situated in the pharynx, evaluate the suitability of the ingested food. Here, through multiple approaches, we characterized the pharyngeal organ (PO) of the hematophagous kissing bug Rhodnius prolixus to determine its role in food assessment. The PO, located antero-dorsally in the pharynx, comprises eight taste sensilla that become bathed with the incoming blood. RESULTS: We showed that these taste sensilla house gustatory receptor neurons projecting their axons through the labral nerves to reach the subesophageal zone in the brain. We found that these neurons are electrically activated by relevant appetitive and aversive gustatory stimuli such as NaCl, ATP, and caffeine. Using RNA-Seq, we examined the expression of sensory-related gene families in the PO. We identified gustatory receptors, ionotropic receptors, transient receptor potential channels, pickpocket channels, opsins, takeouts, neuropeptide precursors, neuropeptide receptors, and biogenic amine receptors. RNA interference assays demonstrated that the salt-related pickpocket channel Rproppk014276 is required during feeding of an appetitive solution of NaCl and ATP. CONCLUSIONS: We provide evidence of the role of the pharyngeal organ in food evaluation. This work shows a comprehensive characterization of a pharyngeal taste organ in a hematophagous insect.


Assuntos
Cloreto de Sódio , Paladar , Animais , Paladar/fisiologia , Cloreto de Sódio/farmacologia , Faringe , Insetos , Trifosfato de Adenosina
2.
Commun Biol ; 7(1): 143, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297108

RESUMO

Where a female mosquito lays her eggs creates the conditions for reproductive success. Here we identify a communal behavior among ovipositing female mosquitoes. When choosing equal breeding sites, gravid Aedes aegypti aggregate more often than expected. This aggregation occurs when water contact is restricted and does not require the presence of eggs. Instead, the aggregation is regulated by the number of females present at the breeding site. Using assays with both occupied and empty oviposition sites, we show that the Orco olfactory co-receptor and a carbon dioxide receptor, Gr3, detect the presence of mosquitoes. orco mutants aggregate more often in empty sites, suggesting attractive olfactory cues influence females to associate with one another. Gr3 mutant females do not prefer either site, suggesting that the CO2 receptor is necessary to evaluate mosquito population density at breeding sites. Further, raising CO2 levels is sufficient to cause wild-type mosquitoes to avoid empty oviposition sites. Our results demonstrate that female mosquitoes can regulate their own population density at breeding sites using attractive and repellent communal cues.


Assuntos
Aedes , Receptores Odorantes , Animais , Feminino , Aedes/genética , Sinais (Psicologia) , Densidade Demográfica , Dióxido de Carbono , Olfato
3.
Mem Inst Oswaldo Cruz ; 118: e220143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466532

RESUMO

BACKGROUND: Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES: In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS: C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS: We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS: This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.


Assuntos
Culex , Culicidae , Animais , Feminino , Culex/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Ovário/metabolismo , Mosquitos Vetores/genética , RNA/metabolismo
4.
iScience ; 26(6): 106883, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275523

RESUMO

Female Aedes aegypti mosquitoes undergo multiple rounds of reproduction, known as gonotrophic cycles. These cycles span the period from blood meal intake to oviposition. Understanding how reproductive success is maintained across gonotrophic cycles allows for the identification of molecular targets to reduce mosquito population growth. Odorant receptor co-receptor (orco) encodes a conserved insect-specific transmembrane ion channel that complexes with tuning odorant receptors (ORs) to form a functional olfactory receptor. orco expression has been identified in the male and female mosquito germline, but its role is unclear. We report an orco-dependent, maternal effect reduction in fertility after the first gonotrophic cycle. This phenotype was removed by CRISPR-Cas9 reversion of the orco mutant locus. Eggs deposited by orco mutant females are fertilized but the embryos reveal developmental defects, reduced hatching, and changes in ion channel signaling gene transcription. We present an unexpected role for an olfactory receptor pathway in mosquito reproduction.

5.
Cold Spring Harb Protoc ; 2023(3): 108013-pdb.prot, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223987

RESUMO

Artificial membrane feeders are devices that replace vertebrate hosts when blood feeding mosquitoes. Created using readily available materials found in mosquito laboratories, Glytube is one of the simplest artificial membrane feeders that scientists can use to provide a blood meal to female mosquitoes in the laboratory. Glytube was optimized for blood feeding the main epidemiologically important species, such as Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles aquasalis Although the Glytube can be used without modifications to blood feed mosquito females, some researchers have modified the device to improve its assembly and to adapt it to different feeding assays that do not involve a basic blood meal, broadening its utility. Here, I describe how to transform a 50-mL conical centrifuge tube into a convenient, versatile, and cost-effective artificial membrane blood feeder.


Assuntos
Aedes , Culex , Animais , Feminino , Membranas Artificiais , Laboratórios , Adaptação Fisiológica
6.
Cold Spring Harb Protoc ; 2023(3): 107655-pdb.top, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223989

RESUMO

Husbandry protocols for medically important mosquito species in the laboratory have the blood feeding procedure as an inherent step in the maintenance routine for egg production. Artificial feeders have become the main solution for delivering blood meals to these hematophagous insects, circumventing the need for vertebrate hosts. Mimicking the skin, these devices both heat the blood and hold a membrane through which the blood can be ingested by mosquitoes. Several commercial and noncommercial artificial mosquito feeders are available, but obstacles like high cost and complex assembly can restrict their routine use. To address this issue, a number of feeders have been designed that can be built with common materials found in the laboratory. They are cheaper and more accessible, but the absence of built-in temperature control and heating units can limit their efficacy. One of the most accessible mosquito feeders is the Glytube. It consists of a 50-mL conical centrifuge tube with heated glycerol that delivers blood through a membrane. The Glytube has been used successfully to model mosquito blood feeding. Recently, 3D printing has emerged as an alternative method to create customized artificial feeders. This technology is expected to facilitate access to and reduce the cost of these devices with open-source 3D model files that can be shared among laboratories maintaining mosquitoes worldwide.


Assuntos
Culicidae , Animais , Laboratórios , Comportamento Alimentar , Impressão Tridimensional
7.
Infect Genet Evol ; 107: 105390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473637

RESUMO

Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.


Assuntos
Aedes , Calreticulina , Infecção por Zika virus , Animais , Feminino , Aedes/genética , Aedes/virologia , Calreticulina/genética , Perfilação da Expressão Gênica , Infecção por Zika virus/genética
8.
Infect Genet Evol, v. 107, 105390, jan. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4758

RESUMO

Zika virus (ZIKV) may cause febrile illness and neurological damage, such as microcephaly in fetuses. ZIKV is transmitted to humans by Aedes aegypti, a nearly cosmopolitan mosquito. Understanding the virus-vector molecular interactions has been promising to enhance the knowledge towards disease mitigation. Since ZIKV infection alters gene physiology of mosquitoes, we examined the expression profile of ZIKV-infected Ae. aegypti by several approaches to identify genes altered by viral infection. Transcriptomics were performed by comparing between ZIKV-infected and uninfected Ae. aegypti females, which revealed some differentially expressed genes. Most of these genes appear to be involved with immune response as evidenced by an interactome analysis, and a prominent finding was a calreticulin-like (CRT) gene, which was upregulated during the infection. Expression of CRT was also experimentally quantified by qPCR, however, it revealed no significant differences between infected and uninfected females. Instead, expression levels were highly variable among individuals and negatively correlated to viral load. We also tested the possibility of this gene to be silenced, but the double-stranded RNA did not reduce CRT expression, and actually increased the inter-individuals' expressional variability. Present results differed from our original hypothesis of upregulation by infection. They also diverged between them (comparing qPCR to Transcriptomics) and from the literature which reported augmented CRT levels in Aedes species during viral infection. Present case probably underlies a more complex virus-host interaction system than we expected. Regulation of this gene seems not to be a linear correlation between expression and viremy. As infection takes place, a complex homeostatic mechanism may act to prevent expression and other cellular tasks from drifting. It is also possible that CRT expression is simply randomly disturbed by viral infection. Taken together, results show that CRT expression profile during ZIKV infection is complex and requires different investigative approaches to be understood. Studies focused on the biochemical function of CRT protein and on its role in the native mosquito metabolic network could unravel how it is actually influenced by ZIKV. Current work contributes more by getting incidental findings and by posing new hypotheses than by answering the original questions.

9.
Mem. Inst. Oswaldo Cruz ; 118: e220143, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448704

RESUMO

BACKGROUND Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.

10.
Microbiol Resour Announc ; 9(31)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732240

RESUMO

Insect-specific viruses do not replicate in vertebrates. Here, we report the genome sequence of a novel strain of a Phasi Charoen-like virus (PCLV) that was isolated from a wild Aedes aegypti mosquito collected in Aracajú, Sergipe State, Brazil. The coding-complete genome of the PCLV is described in this report.

12.
Curr Biol ; 30(1): 127-134.e5, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31839454

RESUMO

Geosmin is one of the most recognizable and common microbial smells on the planet. Some insects, like mosquitoes, require microbial-rich environments for their progeny, whereas for other insects such microbes may prove dangerous. In the vinegar fly Drosophila melanogaster, geosmin is decoded in a remarkably precise fashion and induces aversion, presumably signaling the presence of harmful microbes [1]. We have here investigated the effect of geosmin on the behavior of the yellow fever mosquito Aedes aegypti. In contrast to flies, geosmin is not aversive but mediates egg-laying site selection. Female mosquitoes likely associate geosmin with microbes, including cyanobacteria consumed by larvae [2], who also find geosmin-as well as geosmin-producing cyanobacteria-attractive. Using in vivo multiphoton calcium imaging from transgenic PUb-GCaMP6s mosquitoes, we show that Ae. aegypti code geosmin in a qualitatively similar fashion to flies, i.e., through a single olfactory channel with a high degree of sensitivity for this volatile. We further demonstrate that geosmin can be used as bait under field conditions, and finally, we show that geosmin, which is both expensive and difficult to obtain, can be substituted by beetroot peel extract, providing a cheap and viable potential mean for mosquito control and surveillance in developing countries.


Assuntos
Aedes/efeitos dos fármacos , Quimiotaxia , Naftóis/metabolismo , Oviposição/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia
13.
Sci Rep ; 9(1): 13047, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506595

RESUMO

In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.


Assuntos
Aedes/genética , Animais Geneticamente Modificados , Mosquitos Vetores/genética , Animais , Brasil/epidemiologia , Dengue/epidemiologia , Dengue/transmissão , Dengue/virologia , Genótipo , Controle de Mosquitos/métodos , Polimorfismo de Nucleotídeo Único , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
14.
Insects ; 9(3)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111702

RESUMO

Aedes aegypti is the principal vector of the urban arboviruses and the blood ingestion is important to produce the eggs in this species. To analyze the egg production in Ae. aegypti, researchers frequently use small cages or Drosophila vials to collect eggs from gravid females. Although it is affordable, the setup is time- and space-consuming, mainly when many mosquitoes need to be individually analyzed. This study presents an easy, cheap, and space-saving method to perform individual oviposition assays in Ae. aegypti using cell culture plates. This new method to access fecundity rate was named "oviplate". The oviplates are setup with 12- or 24-well plates, distilled water and filter paper and they are 78 to 88% cheaper than the traditional Drosophila vial assay, respectively. Furthermore, to allocate 72 vitellogenic females in an insectary using Drosophila vial is necessary 4100 cm³ against 1400 cm³ and 700 cm³ when using 12- and 24-well plates, respectively. No statistical differences were found between the number of eggs laid in Drosophila vials and the oviplates, validating the method. The oviplate method is an affordable, and time- and space-efficient device, and it is simpler to perform individual fecundity analyses in Ae. aegypti.

15.
PLoS Negl Trop Dis ; 11(6): e0005630, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614394

RESUMO

BACKGROUND: The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. METHODOLOGY/PRINCIPAL FINDINGS: During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. CONCLUSIONS: Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.


Assuntos
Aedes/virologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Insetos Vetores/virologia , Animais , Brasil , Culex/virologia , Vírus da Dengue , Feminino , Genótipo , Masculino , Filogenia , Análise de Sequência de RNA , Especificidade da Espécie , Zika virus
17.
PLoS One ; 12(2): e0171951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187183

RESUMO

The Zika virus outbreaks are unprecedented human threat in relation to congenital malformations and neurological/autoimmune complications. Since this virus has high potential to spread in regions presenting the vectors, improvement in mosquito control is a top priority. Thus, Aedes aegypti laboratory strains will be fundamental to support studies in different research fields implicated on Zika-mosquito interactions which are the basis for the development of innovative control methods. In this sense, our aim was to determine the main infection aspects of a Brazilian Zika strain in reference Aedes aegypti laboratory mosquitoes. We orally exposed Rockefeller, Higgs and Rexville mosquitoes to the Brazilian ZIKV (ZIKVBR) and qRT-PCR was applied to determine the infection, dissemination and detection rates of ZIKV in the collected saliva as well as viral levels in mosquito tissues. The three strains sustain the virus development but Higgs showed significantly lower viral loads in bodies at 14 days post-infection (dpi) and the lowest prevalences in bodies and heads. The Rockefeller strain was the most susceptible at 7 dpi but similar dissemination rates were observed at 14 dpi. Although variations exist, the ZIKVBR RNA shows detectable levels in saliva of the three strains at 14 dpi but is only detected in Rockefeller at 7 dpi. Moreover, saliva samples from the three strains were confirmed to be infectious when intrathoracically injected into mosquitoes. The ZIKVBR kinetics was monitored in Rockefeller mosquitoes and virus could be identified in the heads at 4 dpi but was more consistently detected late in infection. Our study presents the first evaluation on how Brazilian Zika virus behaves in reference Aedes aegypti strains and shed light on how the infection evolves over time. Vector competence and hallmarks of the ZIKVBR development were revealed in laboratory mosquitoes, providing additional information to accelerate studies focused on ZIKV-mosquito interactions.


Assuntos
Aedes/virologia , Especificidade de Hospedeiro , Mosquitos Vetores/virologia , Zika virus/patogenicidade , Aedes/classificação , Animais , Humanos , Mosquitos Vetores/classificação , Zika virus/classificação
18.
Ciênc. rural ; 47(7): e20160876, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-839875

RESUMO

ABSTRACT: This study was conducted at a beef cattle breeding farm in the far southern region of Brazil. The birth of a calf with unilateral corneal opacity was immediately reported to the Laboratory of Parasitology, in the Universidade Federal de Pelotas, Rio Grande do Sul, Brazil; blood was collected from the cow and calf before colostrum intake. The umbilical cords from this calf and from six other healthy animals were collected. Serological examination, utilizing an indirect fluorescent antibody test, was done using a cut-off point of 1:100. Polymerase chain reaction (PCR) was also performed using the umbilical cord samples. Serological tests showed that the calf was positive for Neospora caninum at birth, with a titer of 1:1600; a titer of 1:3200 was reported in the dam. PCR, using umbilical cord tissue from the affected animal, was positive for the presence of this parasite, and the molecular identity of the amplified product was confirmed by sequencing. Therefore, the detection of N. caninum DNA in the umbilical cord represents a novel alternative test for the diagnosis of this parasitic infection in newborn calves that are clinically suspected to have neosporosis.


RESUMO: O estudo foi realizado em uma fazenda de criação de gado de corte na região do extremo sul do Brasil. O nascimento de um bezerro com opacidade unilateral da córnea foi imediatamente relatado ao Laboratório de Parasitologia da Universidade Federal de Pelotas (RS) e coletou-se sangue da vaca e do bezerro antes da ingestão do colostro. Foram coletados sangue e cordão umbilical do bezerro com opacidade na córnea bem como de outros seis bezerros aparentemente saudáveis antes da ingestão de colostro. Foram realizados exames sorológicos utilizando o teste indireto de anticorpos fluorescentes (IFAT) com ponto de corte de 1: 100 e reação em cadeia da polimerase (PCR). O resultado dos exames sorológicos mostraram que o bezerro foi positivo para N. caninum ao nascer com titulação de 1:1600 e o de sua mãe foi de 1:3200 na IFAT. A PCR do cordão umbilical foi positiva para o agente no animal com opacidade córnea unilateral e a identidade molecular do produto amplificado foi confirmada por sequenciamento. A detecção de DNA de N. caninum no cordão umbilical é uma nova alternativa para o diagnóstico deste agente em bezerros recém-nascidos com suspeita clínica de neosporose.

19.
Plos Neglect. Trop. Dis. ; 11(6): e0005630, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15159

RESUMO

Background The worldwide expansion of new emergent arboviruses such as Chikungunya and Zika reinforces the importance in understanding the role of mosquito species in spreading these pathogens in affected regions. This knowledge is essential for developing effective programs based on species specificity to avoid the establishment of endemic transmission cycles sustained by the identified local vectors. Although the first autochthonous transmission of Chikungunya virus was described in 2014 in the north of Brazil, the main outbreaks were reported in 2015 and 2016 in the northeast of Brazil. Methodology/Principal findings During 5 days of February 2016, we collected mosquitoes in homes of 6 neighborhoods of Aracaju city, the capital of Sergipe state. Four mosquito species were identified but Culex quinquefasciatus and Aedes aegypti were the most abundant. Field-caught mosquitoes were tested for Chikungunya (CHIKV), Zika (ZIKV) and Dengue viruses (DENV) by qRT-PCR and one CHIKV-infected Ae. aegypti female was detected. The complete sequence of CHIKV genome was obtained from this sample and phylogenetic analysis revealed that this isolate belongs to the East-Central-South-African (ECSA) genotype. Conclusions Our study describes the first identification of a naturally CHIKV-infected Ae. aegypti in Brazil and the first report of a CHIKV from ECSA genotype identified in this species in the Americas. These findings support the notion of Ae. aegypti being a vector involved in CHIKV outbreaks in northeast of Brazil.

20.
Malar J ; 15: 153, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964736

RESUMO

BACKGROUND: The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. METHODS: Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. RESULTS: Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. CONCLUSION: These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain.


Assuntos
Aedes/parasitologia , Adesão Celular , Plasmodium falciparum/fisiologia , Plasmodium gallinaceum/fisiologia , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Aedes/genética , Animais , Feminino , Expressão Gênica , Proteínas de Protozoários/genética , Glândulas Salivares/parasitologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...